Aggregate Planning

Coca Cola

- Coca-Cola produces nearly 40% of the beverages consumed in the U.S.
- Matches fluctuating demand by brand to specific plant, labor, and inventory capacity
- High facility utilization requires
- meticulous cleaning between batches
- effective maintenance
- efficient employees
- efficient facility scheduling

Aggregate Planning Requires

- Logical overall unit for measuring sales and outputs
- Forecast of demand for intermediate planning period in these aggregate units
- Method for determining costs
- Model that combines forecasts and costs so that planning decisions can be made

Planning

- Setting goals \& objectives
- Example: Meet demand within the limits of available resources at the least cost
- Determining steps to achieve goals
- Example: Hire more workers
- Setting start \& completion dates
- Example: Begin hiring in Jan.; finish, Mar.
- Assigning responsibility

Planning Tasks and Responsibilities

Planning Horizons

Relationships of the Aggregate Plan

What's Needed for Aggregate Planning

A mathematically based aggregate planning model requires considerable:

- time
- problem definition
- model development
- model verification
- model application
- expertise
- people who understand the problem
- people who understand both the modeling process, and the specific model
- money
- money to pay for all of the above
- often requires funding for several people for several months!

Aggregate Planning

- Provides the quantity and timing of production for intermediate future
- Usually 3 to 18 months into future
- Combines ('aggregates') production
- Often expressed in common units
- Example: Hours, dollars
- Involves capacity and demand variables

Aggregate Planning Goals

- Meet demand
- Use capacity efficiently
- Meet inventory policy
- Minimize cost
- Labor
- Inventory
- Plant \& equipment
- Subcontract

Aggregate Planning Strategies Pure Strategies

- Capacity Options - change capacity:
- changing inventory levels
there are variations in demand over planning horizon.
There are two types of time periods;
Slack months: The months when demand is low
Peak months: The months when demand is high.
One planning-thumb-rule is;
Produce excess than demand during Slack months. Keep
the excess production in stock (inventory). Since, there will
be shortage during "peak" months, overcome the shortage
in "peak" periods from the inventory."

Aggregate Planning Strategies Pure Strategies

- Capacity Options - change capacity:
- varying work force size by hiring or layoffs

The utility of work-force increases or decreases with an organization's work load. During "peak" period, organization requires more and more work force. However, the large pool of work force remains underutilized in "slack" period. In order to keep tight control over expenses, organizations should employ matching number of workers in "peak" as well as in "slack" periods. This implies that large work force should be employed ("hired") in peak period and, excess work force should be laid-off ("fired") in "slack period".

Aggregate Planning Strategies

 Pure Strategies- Capacity Options - change capacity:
- varying production capacity through overtime or idle time
If frequent hiring/firing is not feasible, then organizations will have a constant pool of work force of adequate size. In "slack periods", some of the work force will remain under-utilized. However, some portion of the work force will be engaged in over time as well during "peak" period. This strategy is far better than frequent hiring and firing of the work force.

Aggregate Planning Strategies Pure Strategies

- Capacity Options - change capacity:
- Subcontracting

If some portion of the work order is technically complex and, requires special expertise. Also, this work is not of repetitive nature, then organization can award the work to some $3^{\text {rd }}$ party (subcontracting)

- using part-time workers

If organization's regular work force is too much occupied with work loads, some portion of work may be assigned to part-time workers.

Aggregate Planning Strategies Pure Strategies

- Demand Options - change demand:
- influencing demand demand rises and goes down because of buying trend of the consumer. Offer special discounts during low-demand periods so as to increase sales.
- backordering during high demand periods
since capacity is limited and all the demand cannot be met on-time, get permission from customer to deliver the products at a later time; e.g., meeting January demand by producing in March (Late delivery)
- counterseasonal product mixing
some organizations are engaged in producing more than two products. One product has high demand in winter, and, the other product has demand in summer.

Aggregate Scheduling Options - Advantages and Disadvantages

Advantages/Disadvantages - Continued

Option	Advantage	Disadvantage	Some
			Comments
Varying	Matches seasonal	Overtime	Allows
production rates	fluctuations	premiums, tired	flexibility within
through overtime	without	workers, may not	the aggregate
or idle time	hiring/training	meet demand	plan
	costs		
Subcontracting	Permits	Loss of quality	Applies mainly
	flexibility and	control; reduced	in production
	smoothing of the	profits; loss of	settings
	firm's output	future business	

Advantages/Disadvantages - Continued

Option	Advantage	Disadvantage	Some Comments
Using part-time workers	Less costly and more flexible than full-time workers	High turnover/training costs; quality suffers; scheduling difficult	Good for unskilled jobs in areas with large temporary labor pools
Influencing demand	Tries to use excess capacity. Discounts draw new customers.	Uncertainty in demand. Hard to match demand to supply exactly.	Creates

Advantage/Disadvantage - Continued

Option	Advantage	Disadvantage	Some Comments
Back ordering during high- demand periods	May avoid overtime. Keeps capacity constant	Customer must be willing to wait, but goodwill is lost.	Many companies backorder.
Counterseasonal products and service mixing	Fully utilizes resources; allows stable workforce.	May require skills or equipment outside a firm's areas of expertise.	Difficult finding products or

Aggregate Planning Strategies

Aggregate Planning Strategies

- Mixed strategy
- Combines 2 or more aggregate scheduling options
- uses alternatives mixing inventory, back order, capacity change, work force change, etc
- Level scheduling strategy
- Produce same amount of products every day
- Keep work force level constant
- Vary non-work force capacity or demand options
- Often results in lowest production costs

Aggregate Planning Methods

- Graphical \& charting techniques
- Popular \& easy-to-understand
- Trial \& error approach
- Mathematical approaches
- Transportation method
- Linear decision rule
- Management coefficients model
- Linear Programming
- Simulation

The Graphical Approach to Aggregate Planning

- Forecast the demand for each period
- Determine the capacity for regular time, overtime, and subcontracting, for each period
- Determine the labor costs, hiring and firing costs, and inventory holding costs
- Consider company policies which may apply to the workers or to stock levels
- Develop alternative plans, and examine their total costs

Data for a 6-month production planning problem is given below:

Month	Working Days	Demand per day
Jan	22	41
Feb	18	40
Mar	21	39
Apr	21	57
May	22	68
Jun	20	54

Suppose, "chase strategy" is to be adopted. Two workers are required to produce one unit. Propose a feasible plan.
Is the plan acceptable?

Employ an exact number of workers so that number of units produced per month is equal to number of units demanded

Work Force Requirements \& Changes/Month

Month	Days/ month (A)	Demand/ day (B)	Units/ month C=(AxB)	Workers/ month D=2C	Change/ month
Jan	22	41	902	1804	0
Feb	18	40	720	1440	-364
Mar	21	39	819	1638	198
Apr	21	57	1197	2394	756
May	22	68	1496	2992	598
Jun	20	54	1080	2160	-832

Beginning Work Force Level = 1700 workers

Abrupt Employment (hiring) and Layoff from job (firing) at mass-scale is not acceptable (why)?

Consider 6-month production planning problem once again.

Month	Working Days	Demand per day
Jan	22	41
Feb	18	40
Mar	21	39
Apr	21	57
May	22	68
Jun	20	54

Suppose, "level strategy" is to be adopted. Find a constant production rate so that no shortage occurs

To find daily production rate so that no shortage occurs;
Divide total demand by total number of days.
Production rate $=6214 / 124=50$ units (app)

Forecast and Average Forecast Demand

Inventory is accumulated
Because Demand < Production during Jan, Feb, Mar.

Month	Working Days	Demand per day	Production per day	Inventory $(+/-)$	Cumm Inventory
Jan	22	41	50	198	198
Feb	18	40	50	180	378
Mar	21	39	50	231	609
Apr	21	57	50	-147	462
May	22	68	50	-396	66
Jun	20	54	50	-80	-14

Shortage Created

Because

demand> Production
in Apr, May and Jun

Cumulative Inventory

This inventory shows the overall total inventory at the end of each period

Cumulative Production \& Demand Graph

The region between production line and demand line shows inventory.

Cumulative Demand Graph for Plan 1

Transportation Method

Transportation Method of Planning

- Each row in transportation table represents a production period
- Each column in the table represents a demand period
- Each cell in the table represents cost of production and inventory holding cost.

	Demand Period 1	Demand Period 2	Demand Period 3	Capacity/ Supply
Production Period 1	C_{11}	C_{12}	C_{13}	P_{1}
Production Period 2	$* *$	C_{22}	c_{23}	P_{2}
Production Period 3	$* *$	$* *$	c_{33}	P_{3}
Demand \rightarrow	D_{1}	D_{2}	D_{3}	

Transportation Method of Planning

- Suppose we have three month planning problem: \{Jan, Feb, Mar \} Demands for Jan, Feb and Mar are : $\{40,50,50\}$
Production capacity for Jan, Feb and Mar are : $\{50,50,40\}$
Production cost = \$10/unit. Inventory holding cost = \$2/unit/period
$\mathrm{c}_{11}=\mathrm{c}_{22}=\mathrm{c}_{33}=\$ 10, \mathrm{c}_{12}=10+2=\$ 12, \mathrm{c}_{13}=10+2+2=\$ 14$
$c_{23}=10+2=\$ 12$.
Entering the data; Transportation Table will look like as follows:

	Demand Jan	Demand Feb	Demand Mar	Capacity/ Supply
Produce in Jan	10	12	14	50
Produce in Feb	**	10	12	50
Produce in Mar	**	**	10	40
Demand \rightarrow	40	50	50	

```
MIN= 10 * (X1 + X2 + X3) + 2 * (I1 + I2 + I3 );
! Demand Data;
D1 = 40; D2 = 50; D3 = 50;
! Capacity Data;
P1 = 50; P2 = 50; P3 = 40;
! Subject to;
[Unused_Capacity_For_Period_1] X1 <= P1;
[Unused_Capacity_For_Period_2] X2 <= P2;
[Unused_Capacity_For_Period_3] X3 <= P3;
! Inventory Balance Constraints;
IO = 0;
I1 = I0 + X1 - D1;
I2 = I1 + X2 - D2;
I3 = I2 + X3 - D3;
```


Transportation Method of Planning
 - Least cost solution;

	Demand Jan	Demand Feb	Demand Mar	Capacity/ Supply
Produce in Jan	(40) 10	12	(10) 14	50
Produce in Feb	**	(50) 10	12	50
Produce in Mar	**	**	(40) 10	40
Demand \rightarrow	40	50	50	

Produce $\rightarrow 50$

Optimal solution for by LP;

Global optimal solution found.

Infeasibilities:
0.000000

Total solver iterations:

Value
50.00000
50.00000
40.00000
10.00000
10.00000
0.000000

Reduced Cost
0.000000
0.000000
|0. 000000
0.000000
0.000000
16.00000

Multiple Production Source Problem

- Solve three month planning problem: \{ Mar, Apr, May \}

Demands for Mar, Apr and May are : $\{800,1000,750\}$
Production is to be carried out in Mar, Apr and May.
There are three sources of Production in each month. Regular Time, Overtime and Subcontract
Capacity for each source in each month is :
Regular time $=700$ units
Overtime = 50 units
Subcontract = 150 units
Production cost in each month:

Inventory holding cost = \$2/unit/period
There are 100 units in inventory at the beginning of Mar.
Use Transportation Problem and develop a Production Plan.

Iransportation Table

Iransportation Table

Cost of solution:
$700 * 40+52 * 50+150 * 72+700 * 40+50 * 50+70 * 50+40 * 700+50 * 50=\$ 105,900$

Solution by Transportation Model

Comparison of Three Major Aggregate Planning Methods

Charting/graphic Trial and error Simple to understand, easy to al methods
Transportation method
use. Many solutions; one chosen may not be optimal
LP software available;permits sensitivity analysis and constraints. Linear function may not be realistic

